Python Tutorial

Python HOME Python Intro Python Get Started Python Syntax Python Comments Python Variables Python Data Types Python Numbers Python Casting Python Strings Python Booleans Python Operators Python Lists Python Tuples Python Sets Python Dictionaries Python If...Else Python While Loops Python For Loops Python Functions Python Lambda Python Arrays Python Classes/Objects Python Inheritance Python Iterators Python Scope Python Modules Python Dates Python Math Python JSON Python RegEx Python PIP Python Try...Except Python User Input Python String Formatting

File Handling

Python File Handling Python Read Files Python Write/Create Files Python Delete Files

Python NumPy

NumPy Intro NumPy Getting Started NumPy Creating Arrays NumPy Array Indexing NumPy Array Slicing NumPy Data Types NumPy Copy vs View NumPy Array Shape NumPy Array Reshape NumPy Array Iterating NumPy Array Join NumPy Array Split NumPy Array Search NumPy Array Sort NumPy Array Filter NumPy Random NumPy ufunc

Machine Learning

Getting Started Mean Median Mode Standard Deviation Percentile Data Distribution Normal Data Distribution Scatter Plot Linear Regression Polynomial Regression Multiple Regression Scale Train/Test Decision Tree

Python MySQL

MySQL Get Started MySQL Create Database MySQL Create Table MySQL Insert MySQL Select MySQL Where MySQL Order By MySQL Delete MySQL Drop Table MySQL Update MySQL Limit MySQL Join

Python MongoDB

MongoDB Get Started MongoDB Create Database MongoDB Create Collection MongoDB Insert MongoDB Find MongoDB Query MongoDB Sort MongoDB Delete MongoDB Drop Collection MongoDB Update MongoDB Limit

Python Reference

Python Overview Python Built-in Functions Python String Methods Python List Methods Python Dictionary Methods Python Tuple Methods Python Set Methods Python File Methods Python Keywords Python Exceptions Python Glossary

Module Reference

Random Module Requests Module Math Module cMath Module

Python How To

Remove List Duplicates Reverse a String Add Two Numbers

Python Examples

Python Examples Python Compiler Python Exercises

NumPy ufuncs


What are ufuncs?

ufuncs stands for "Universal Functions" and they are NumPy functions that operates on the ndarray object.

Why use ufuncs?

ufuncs are used to implement vectorization in NumPy which is way faster than iterating over elements.

They also provide broadcasting and additional methods like reduce, accumulate etc. that are very helpful for computation.

ufuncs also take additional arguments, like:

where boolean array or condition defining where the operations should take place.

dtype defining the return type of elements.

out output array where the return value should be copied.


What is Vectorization?

Converting iterative statements into a vector based operation is called vectorization.

It is faster as modern CPUs are optimized for such operations.

Add the Elements of Two Lists

list 1: [1, 2, 3, 4]

list 2: [4, 5, 6, 7]

One way of doing it is to iterate over both of the lists and then sum each elements.

Example

Without ufunc, we can use Python's built-in zip() method:

x = [1, 2, 3, 4]
y = [4, 5, 6, 7]
z = []

for i, j in zip(x, y):
  z.append(i + j)
print(z)
Try it Yourself »

NumPy has a ufunc for this, called add(x, y) that will produce the same result.

Example

With ufunc, we can use the add() function:

import numpy as np

x = [1, 2, 3, 4]
y = [4, 5, 6, 7]
z = np.add(x, y)

print(z)
Try it Yourself »