Tutorials References Menu

Pandas DataFrame drop() Method

❮ DataFrame Reference


Example

Remove the "age" column from the DataFrame:

import pandas as pd

data = {
  "name": ["Sally", "Mary", "John"],
  "age": [50, 40, 30],
  "qualified": [True, False, False]
}

df = pd.DataFrame(data)

newdf = df.drop("age", axis='columns')

print(newdf)
Try it Yourself »

Definition and Usage

The drop() method removes the specified row or column.

By specifying the column axis (axis='columns'), the drop() method removes the specified column.

By specifying the row axis (axis='index'), the drop() method removes the specified row.


Syntax

dataframe.drop(labels, axis, index, columns, level, inplace., errors)

Parameters

The axis, index, columns, level, inplace, errors parameters are keyword arguments.

Parameter Value Description
labels   Optional, The labels or indexes to drop. If more than one, specify them in a list.
axis 0
1
'index'
'columns'
Optional, Which axis to check, default 0.
index String
List
Optional, Specifies the name of the rows to drop. Can be used instead of the labels parameter.
columns String
List
Optional, Specifies the name of the columns to drop. Can be used instead of the labels parameter.
level Number
level name
Optional, default None. Specifies which level ( in a hierarchical multi index) to check along
inplace True
False
Optional, default False. If True: the removing is done on the current DataFrame. If False: returns a copy where the removing is done.
errors 'ignore'
'raise'
Optional, default 'ignore'. Specifies whether to ignore errors or not

Return Value

A DataFrame with the result, or None if the inplace parameter is set to True.


❮ DataFrame Reference