Pandas - DataFrame Reference
All properties and methods of the DataFrame object, with explanations and examples:
Property/Method | Description |
---|---|
abs() | Return a DataFrame with the absolute value of each value |
add() | Adds the values of a DataFrame with the specified value(s) |
add_prefix() | Prefix all labels |
add_suffix() | Suffix all labels |
agg() | Apply a function or a function name to one of the axis of the DataFrame |
aggregate() | Apply a function or a function name to one of the axis of the DataFrame |
align() | Aligns two DataFrames with a specified join method |
all() | Return True if all values in the DataFrame are True, otherwise False |
any() | Returns True if any of the values in the DataFrame are True, otherwise False |
append() | Append new columns |
applymap() | Execute a function for each element in the DataFrame |
apply() | Apply a function to one of the axis of the DataFrame |
assign() | Assign new columns |
astype() | Convert the DataFrame into a specified dtype |
at | Get or set the value of the item with the specified label |
axes | Returns the labels of the rows and the columns of the DataFrame |
bfill() | Replaces NULL values with the value from the next row |
bool() | Returns the Boolean value of the DataFrame |
columns | Returns the column labels of the DataFrame |
combine() | Compare the values in two DataFrames, and let a function decide which values to keep |
combine_first() | Compare two DataFrames, and if the first DataFrame has a NULL value, it will be filled with the respective value from the second DataFrame |
compare() | Compare two DataFrames and return the differences |
convert_dtypes() | Converts the columns in the DataFrame into new dtypes |
corr() | Find the correlation (relationship) between each column |
count() | Returns the number of not empty cells for each column/row |
cov() | Find the covariance of the columns |
copy() | Returns a copy of the DataFrame |
cummax() | Calculate the cumulative maximum values of the DataFrame |
cummin() | Calculate the cumulative minmum values of the DataFrame |
cumprod() | Calculate the cumulative product over the DataFrame |
cumsum() | Calculate the cumulative sum over the DataFrame |
describe() | Returns a description summary for each column in the DataFrame |
diff() | Calculate the difference between a value and the value of the same column in the previous row |
div() | Divides the values of a DataFrame with the specified value(s) |
dot() | Multiplies the values of a DataFrame with values from another array-like object, and add the result |
drop() | Drops the specified rows/columns from the DataFrame |
drop_duplicates() | Drops duplicate values from the DataFrame |
droplevel() | Drops the specified index/column(s) |
dropna() | Drops all rows that contains NULL values |
dtypes | Returns the dtypes of the columns of the DataFrame |
duplicated() | Returns True for duplicated rows, otherwise False |
empty | Returns True if the DataFrame is empty, otherwise False |
eq() | Returns True for values that are equal to the specified value(s), otherwise False |
equals() | Returns True if two DataFrames are equal, otherwise False |
eval | Evaluate a specified string |
explode() | Converts each element into a row |
ffill() | Replaces NULL values with the value from the previous row |
fillna() | Replaces NULL values with the specified value |
filter() | Filter the DataFrame according to the specified filter |
first() | Returns the first rows of a specified date selection |
floordiv() | Divides the values of a DataFrame with the specified value(s), and floor the values |
ge() | Returns True for values greater than, or equal to the specified value(s), otherwise False |
get() | Returns the item of the specified key |
groupby() | Groups the rows/columns into specified groups |
gt() | Returns True for values greater than the specified value(s), otherwise False |
head() | Returns the header row and the first 10 rows, or the specified number of rows |
iat | Get or set the value of the item in the specified position |
idxmax() | Returns the label of the max value in the specified axis |
idxmin() | Returns the label of the min value in the specified axis |
iloc | Get or set the values of a group of elements in the specified positions |
index | Returns the row labels of the DataFrame |
infer_objects() | Change the dtype of the columns in the DataFrame |
info() | Prints information about the DataFrame |
insert() | Insert a column in the DataFrame |
interpolate() | Replaces not-a-number values with the interpolated method |
isin() | Returns True if each elements in the DataFrame is in the specified value |
isna() | Finds not-a-number values |
isnull() | Finds NULL values |
items() | Iterate over the columns of the DataFrame |
iteritems() | Iterate over the columns of the DataFrame |
iterrows() | Iterate over the rows of the DataFrame |
itertuples() | Iterate over the rows as named tuples |
join() | Join columns of another DataFrame |
last() | Returns the last rows of a specified date selection |
le() | Returns True for values less than, or equal to the specified value(s), otherwise False |
loc | Get or set the value of a group of elements specified using their labels |
lt() | Returns True for values less than the specified value(s), otherwise False |
keys() | Returns the keys of the info axis |
kurtosis() | Returns the kurtosis of the values in the specified axis |
mask() | Replace all values where the specified condition is True |
max() | Return the max of the values in the specified axis |
mean() | Return the mean of the values in the specified axis |
median() | Return the median of the values in the specified axis |
melt() | Reshape the DataFrame from a wide table to a long table |
memory_usage() | Returns the memory usage of each column |
merge() | Merge DataFrame objects |
min() | Returns the min of the values in the specified axis |
mod() | Modules (find the remainder) of the values of a DataFrame |
mode() | Returns the mode of the values in the specified axis |
mul() | Multiplies the values of a DataFrame with the specified value(s) |
ndim | Returns the number of dimensions of the DataFrame |
ne() | Returns True for values that are not equal to the specified value(s), otherwise False |
nlargest() | Sort the DataFrame by the specified columns, descending, and return the specified number of rows |
notna() | Finds values that are not not-a-number |
notnull() | Finds values that are not NULL |
nsmallest() | Sort the DataFrame by the specified columns, ascending, and return the specified number of rows |
nunique() | Returns the number of unique values in the specified axis |
pct_change() | Returns the percentage change between the previous and the current value |
pipe() | Apply a function to the DataFrame |
pivot() | Re-shape the DataFrame |
pivot_table() | Create a spreadsheet pivot table as a DataFrame |
pop() | Removes an element from the DataFrame |
pow() | Raise the values of one DataFrame to the values of another DataFrame |
prod() | Returns the product of all values in the specified axis |
product() | Returns the product of the values in the specified axis |
quantile() | Returns the values at the specified quantile of the specified axis |
query() | Query the DataFrame |
radd() | Reverse-adds the values of one DataFrame with the values of another DataFrame |
rdiv() | Reverse-divides the values of one DataFrame with the values of another DataFrame |
reindex() | Change the labels of the DataFrame |
reindex_like() | ?? |
rename() | Change the labels of the axes |
rename_axis() | Change the name of the axis |
reorder_levels() | Re-order the index levels |
replace() | Replace the specified values |
reset_index() | Reset the index |
rfloordiv() | Reverse-divides the values of one DataFrame with the values of another DataFrame |
rmod() | Reverse-modules the values of one DataFrame to the values of another DataFrame |
rmul() | Reverse-multiplies the values of one DataFrame with the values of another DataFrame |
round() | Returns a DataFrame with all values rounded into the specified format |
rpow() | Reverse-raises the values of one DataFrame up to the values of another DataFrame |
rsub() | Reverse-subtracts the values of one DataFrame to the values of another DataFrame |
rtruediv() | Reverse-divides the values of one DataFrame with the values of another DataFrame |
sample() | Returns a random selection elements |
sem() | Returns the standard error of the mean in the specified axis |
select_dtypes() | Returns a DataFrame with columns of selected data types |
shape | Returns the number of rows and columns of the DataFrame |
set_axis() | Sets the index of the specified axis |
set_flags() | Returns a new DataFrame with the specified flags |
set_index() | Set the Index of the DataFrame |
size | Returns the number of elements in the DataFrame |
skew() | Returns the skew of the values in the specified axis |
sort_index() | Sorts the DataFrame according to the labels |
sort_values() | Sorts the DataFrame according to the values |
squeeze() | Converts a single column DataFrame into a Series |
stack() | Reshape the DataFrame from a wide table to a long table |
std() | Returns the standard deviation of the values in the specified axis |
sum() | Returns the sum of the values in the specified axis |
sub() | Subtracts the values of a DataFrame with the specified value(s) |
swaplevel() | Swaps the two specified levels |
T | Turns rows into columns and columns into rows |
tail() | Returns the headers and the last rows |
take() | Returns the specified elements |
to_xarray() | Returns an xarray object |
transform() | Execute a function for each value in the DataFrame |
transpose() | Turns rows into columns and columns into rows |
truediv() | Divides the values of a DataFrame with the specified value(s) |
truncate() | Removes elements outside of a specified set of values |
update() | Update one DataFrame with the values from another DataFrame |
value_counts() | Returns the number of unique rows |
values | Returns the DataFrame as a NumPy array |
var() | Returns the variance of the values in the specified axis |
where() | Replace all values where the specified condition is False |
xs() | Returns the cross-section of the DataFrame |
__iter__() | Returns an iterator of the info axes |